Non-linear dynamics with an RLD-Circuit

Fatima Perwaiz, Junaid Alam, Muhammad Sabieh Anwar, and Uzair Abdul Latif
LUMS School of Science and Engineering

Version 2019-v2

December 31, 2019

This experiment is based on Chaos theory and the nonlinear dynamics of an RLD (resister-inductor-diode)-circuit. By employing different data-acquisition techniques and representing them via time-series plot, phase portrait, Poincare section, spectrum density plot, and bifurcation diagram, we aim to observe the varying period of the voltage signal across the resistor. Each of these plots is an attempt to present a clear picture of bifurcation—the point where period-doubling takes place. We want to be able to distinguish higher order periods such as 8T from chaos using these plots.

KEYWORDS

Dynamical System · Phase Portrait · Poincare Map · Feigenbaum Constant · Diode Recovery Time · Junction Capacitance · Resonance · Period Doubling Bifurcation · Chaos.

APPROXIMATE PERFORMANCE TIME: 2.5 week.

1 Objectives

In this experiment we will discover:

1. how very simple systems (RLD circuit) can exhibit complex behavior under certain conditions,
2. the richness of the mathematical and physical structure of dynamical systems,
3. how an arbitrarily small change in the input can change the long-term conduct of a dynamical system drastically (Sensitive Dependence on Initial Conditions),
4. how to construct and interpret phase portraits, bifurcation diagrams, and Poincare Maps for different kinds of responses of a system,
5. the Feigenbaum constant and what makes chaos a universal underlying structure of the complexity exhibited by nonlinear dynamical systems.
2 Foundations

Summon up: What kind of nonlinear phenomena have you come across? Try to list a few, with a reason to why you believe them to be nonlinear.

2.1 Defining Nonlinear Dynamics

Nonlinear systems are those dynamical systems for which the principle of superposition does not hold. For such systems, the sum of responses to several inputs cannot be treated as a single response to the sum of those all inputs. In other words, for such systems, the change in the output parameter is not proportional to that of the input parameter. On increasing the input variable linearly, the corresponding output variable shows different behaviours—ranging from doubling of the output to four times to chaos and then back to an integer multiple of the initial value (it could be some other pattern too).

Now, if \(x \) represents an input variable and \(y \) is the output as a function of \(x \), the principle of superposition in its very simplistic form states that:

\[
y(x_1 + x_2 + \ldots + x_n) = y(x_1) + y(x_2) + \ldots + y(x_n)
\]

The above mathematical expression means that if the stimulus to a linear system is doubled, the response is also doubled. For a nonlinear system, the response will be greater or less than that.

What makes nonlinearity so important? The basic idea is that for a linear system, when a parameter (e.g. the spring constant \(k \) in a spring mass system) is varied, it doesn’t change the qualitative behavior of the system. On the other hand, for nonlinear systems, a small change in a parameter can lead to sudden and dramatic changes in both the qualitative and quantitative behavior of the system. For one value, the behavior might be periodic. For another value only slightly different from the first, the behavior might be completely aperiodic.

2.2 Chaos

In the context of nonlinear dynamical systems, chaos is a word used to describe the time behavior of a system that is aperiodic, and is apparently random or “noisy”. But, underlying this chaotic randomness is an order that can be determined by the time evolution equations that describe the system. Even when it may sound paradoxical, such an apparently random system is in fact deterministic. Chaos is identified by hypersensitive dependence on initial conditions. A minute change in initial conditions can lead to drastically differing dynamical evolution of the system.

Generally, the path to chaos begins with a so called period-doubling bifurcation: system switches to a new behavior with twice the period of the original system at a particular value of a certain parameter. As the value of that parameter is further increased, successive bifurcations occur and the behavior of system takes a time period that is four times, then eight times and so on, finally ending up in chaotic behavior.

The math ingredient: A dynamical system is expressed by its differential equations. Consider what happens to the solution of the system equations when a bifurcation occurs?
2.3 Different Ways to Represent Chaos

There are various ways to represent the data obtained from a nonlinear system. Below, we have discussed some of them as we will use them in the course of our experiment.

Following ways of representing chaos have been explained in terms of a driven damped pendulum (DDP). The differential equation for the system is,

$$\ddot{\phi} + 2\beta \dot{\phi} + \omega_0^2 \sin(\phi) = \gamma \omega_0^2 \cos(\omega t),$$

where γ is the driving force (input parameter) that is varied for each iteration.

2.3.1 Time-Series

Time plot is the simplest way to observe the nonlinear behaviour of a system. By changing the input parameter, we observe changes in the period of the system. In the case of DDP, for each values of the driving force, we can plot ϕ against time and examine the period of the pendulum. On increasing γ, we expect the period of the system to double, then three times, four times, eight times and so on till we enter the region of chaos. We can see from Figure 1a, how the increase in the value of γ from 1.06 to 1.078 causes period-doubling.

2.3.2 Phase Portrait

The phase portrait is a trajectory of the system, shown in time, with two conjugate variables plotted against each other. For a DDP, phase portrait are drawn by plotting $\phi(t)$ and $\dot{\phi}(t)$ as a point in a two-dimensional plane, where the horizontal axis labels $\phi(t)$ and the vertical axis $\dot{\phi}(t)$. The graph displays several loops, each corresponding to a particular period. If there is a single loop in the plot, it means its a period-1 wave. For two loops, period-doubling has occurred, and so on. However, if none of the loops are identical or fully overlapping then it means the system is in the chaotic region. Figure 1b shows the transition from period-2 to period-4.

2.3.3 Poincare Section

Poincarediagramisanextensiontophaseportrait. It is particularly useful to show the chaotic region as they are clearer and easy to understand. The basic purpose of these maps is to reduce an n-dimensional system to an $(n-1)$-dimension to make the analysis easier. Constructing a Poincare map is simple: sample the phase portrait of the system stroboscopically [7]. For periodic behavior, the Poincare map will be a single point or a well-identified distinct groups of points. For chaotic or aperiodic behavior, there will be many irregularly distributed points in the map.

2.3.4 Bifurcation Diagram

Lastly, the bifurcation diagram is an efficient way to see the complete picture of the varying behaviour of a nonlinear system. It shows a correspondence between the parameter values and the resulting response of the system. Each splitting in the plot indicates a change in period. For a DDP, the bifurcation diagram plots $\phi(t)$ against γ, as shown in Figure 1d. As the control parameter γ varies, the response variable $\phi(t)$ begins to bifurcate: two paths for the first bifurcation, four for the second, eight for third one, and so on. The fuzzy bands in the middle indicate chaotic behavior. One can also observe the periodic bands following the chaotic region, showing how chaos can suddenly vanish and give rise to a certain higher order period.
Figure 1: Different ways of representing the nonlinear behavior of a system [9]. (a) Time-series plots displaying period-doubling for the increase in γ. (b) Phase portraits displaying the change in period from two to four. (c) Poincare section showing a simplified version for the period-2 phase portrait. (d) The bifurcation diagram for the changing values of γ and the corresponding change in $\phi(t)$.
2.4 Universality of chaos and the Feigenbaum Constant

When we look at a bifurcation diagram, such as the one shown in figure (1 d), we can see the distances between successive bifurcations getting smaller and smaller in a geometric way (along the horizontal axis). This is what Feigenbaum noticed: the ratio of differences of parameter values at which successive bifurcations occur is the same for all the splittings [2]. Mathematically speaking:

\[
\delta_n = \frac{\lambda_n - \lambda_{n-1}}{\lambda_{n+1} - \lambda_n},
\]

where \(\lambda_n \) is the parameter value at which the \(n \)'th bifurcation occurs. Moreover, this ratio converges to a particular value called the Feigenbaum constant as \(n \) approaches infinity:

\[
\delta \equiv \lim_{n \to \infty} \delta_n = 4.669201\ldots
\]

3 The Experiment

The subject of this experiment is a simple RL-Diode circuit. Although simple it may seem, yet it exhibits interesting behavior including bifurcations and chaos. A series arrangement will be used as shown in the accompanying figure.

![Figure 2: The Experimental RL-Diode circuit.](image)

3.1 The Circuit

The circuit in Figure (2) will alternately behave in two different modes when subject to an AC voltage source: first when the diode is forward biased, the other when it is reverse biased.

3.2 The Mathematical Model

During the conducting cycle, the circuit reduces to what is shown in figure (3a), with the diode acting as a fixed voltage drop, i.e., a battery. The Kirchhoff’s voltage law applied to this circuit gives:

\[
L \frac{dl}{dt} + RI = V_o \sin\omega t + V_f,
\]

where \(V_o \) is the peak amplitude of the AC input voltage and \(V_f \) is the diode’s forward voltage drop, which is generally about 0.5-1.0 V. The solution of this equation, i.e., the current in the conducting cycle is easily found [4]:

5
In the above equation \(\theta = \tan^{-1}(\omega L/R) \) represents a phase delay; \(A \) is a constant of integration to be calculated using the initial conditions and \(Z_a = \sqrt{R^2 + \omega^2 L^2} \) is the forward bias impedance of the circuit.

In the non-conducting cycle, the diode behaves as a capacitor having a capacitance equal to its junction capacitance \(C_j \). The equivalent circuit can be represented as a driven \(RLC \) circuit (figure (3b)). The loop equation becomes a second order differential equation:

\[
L \frac{d^2 I}{dt^2} + R \frac{d I}{dt} + \left(\frac{1}{C_j} \right) I = V_0 \omega \cos \omega t
\]

(5)

Derive: Derive the above equation from Kirchhoff’s voltage law.

Equation (5) can be solved using traditional techniques.

Derive: Derive the solutions of Equations (3) and (5). The solution for Equation (3) is given in (4) while the final solution of equation (5) is given below:

\[
I(t) = \left(\frac{V_0}{Z_b} \right) \cos(\omega t - \theta_b) + B e^{-R t / L} \cos(\omega_b t - \phi)
\]

(6)

The constants \(B \) and \(\phi \) are constants of integration and can be found using the initial conditions of the cycle. Moreover, \(\theta_b = \tan^{-1}(\omega R/L(\omega_0^2 - \omega^2)) \), \(\omega_0^2 = (1/LC_j) \), \(\omega_b^2 = \omega_0^2 - (R/2L)^2 \) and \(Z_b = \left(\frac{1}{\omega} \right) \sqrt{(\omega_0^2 - \omega^2)^2 + \left(\frac{R}{L} \right)^2} \).

3.3 The Physical Model

3.3.1 The diode recovery-time

Prior to looking into the practical behavior of the circuit and how it becomes chaotic, we need to understand the meanings and significance of an important parameter: the diode’s recovery time. The recovery time of a diode is the time a diode would take to completely stop the flow of forward current through itself as it moves into the non-conducting cycle. It depends on the amount of maximum forward current that has just flown through the diode. The greater the peak forward current, the longer the diode recovery time. Quantitatively speaking the recovery time is given by [4]:

![Diode Forward Bias](image1.png)

(a) Diode forward bias.

![Diode Reverse Bias](image2.png)

(b) Diode reverse bias.

Figure 3: Equivalent circuits for forward and reverse bias cycle.
\[\tau_r = \tau_m \left[1 - \exp(-|I_m|/I_c) \right] \] (7)

where \(|I_m|\) is the magnitude of the recent most maximum forward current, and \(\tau_m\) and \(I_c\) are fabrication parameters for the specific diode.

Bring to Light: What is the physical explanation of a diode’s junction capacitance? What relationship does it have with the recovery time?

![Figure 4: Circuit current, I, and diode voltage, \(V_d\), (period-2) [4]. The diode conducts when \(V_d = -V_f\) behaving as in the circuit in figure (10a). Otherwise it behaves as a capacitor as shown in figure (10b).](image)

3.3.2 The period-doubling route to chaos

A physical description of how the RLD circuit leads to period doubling is described in detail in [4]. Here we reciprocate the most important points.

A certain amount of reverse current will flow through the diode in every reverse bias cycle due to the finite recovery time of the diode. If the peak current \(|I_m|\) is large in the conducting cycle (figure 4, interval 'a'), the diode will switch off with a certain delay (figure 4, interval 'b') due to the finite recovery time and so will allow a current to flow even in the reverse-bias cycle (shown in the interval 'b'). This reverse current, in turn, will prevent the diode from instantly switching on in the forward bias cycle; it will turn on with a delay (figure 4, interval 'c'). This will keep the forward peak current smaller than in the previous forward bias cycle, hence giving birth to two distinct peaks of the forward current. Notice that it took two cycles of the driving signal in this process. This is what we identify as a period-doubling bifurcation.

When the peak value of the drive voltage is increased, bifurcation to period-4 may occur followed, possibly, by higher bifurcations and eventually chaos.

Self-Assessment: Briefly explain figure (4) according to the labels on the time axis, describing what happens at every marked instant.
3.4 The Procedure

3.4.1 The Setup

The list of equipment used in this experiment is listed here.

1. Oscilloscope (Agilent DSO-X 2002A)
2. Function Generator (BK Precision 4086)
3. Data Acquisition Setup (National Instruments DAQ card)
4. Spectrum Analyser (Agilent N9320B)
5. RL-Diode circuit components - 100 Ω Resistor, ≈ 15.054 mH Inductor, 1N4007 Diode

Chaos and bifurcations are usually observed by changing only one parameter (and keeping all others constant) and observing the response of the system. In our case the system is an RLD-circuit in which current and voltage will be made to oscillate using an AC signal generator. Generally, a signal can be controlled through two parameters: frequency and amplitude. So we have the option of keeping one of them constant while changing the other. In our case frequency will be kept constant throughout while the amplitude is varied.

It is now time to start our experimental expedition.

Before you begin: Keep the operating manuals of the oscilloscope and signal generator handy. You will have to frequently consult these.

3.4.2 Time-series of voltage across resistor

Connect the circuit in series to the signal generator. Using a BNC-to-Crocodile clips cable, feed V_R into Channel 1 of the Agilent oscilloscope.

![Figure 5: Schematic for the circuit for measuring V_R across the resistor.](image)

Fix the frequency of V_{in} using the BK4086 signal generator to 50 kHz. (NOTE: The frequency will be kept fixed for all future segments of the experiment.)

Now change the amplitude of V_{in} in steps of 0.01 V and observe and record the changes in the V_R waveform on the oscilloscope. Keep adjusting your oscilloscope scales accordingly to view the full
waveform. You expect to see a period-1 ($\frac{1}{50}$ ms) waveform, which transitions to period-2, period-4 and so on (See sample results posted online).

When a bifurcation occurs, you will also need to alter the trigger level (using the trigger knob) of the oscilloscope so that bifurcation peaks are clearly visible on the waveforms. A more stable and finer waveform can be formed by increasing the number of samples (of the input signal at Channel 1) being averaged out by the oscilloscope. The number of averages can be increased by pressing Acquire on the oscilloscope and increasing the averaged number to 128.

Questions

1. What does the trigger knob do? If you haven’t explored it yet play around with it as it’s the only way to get a clear stable waveform.
2. When does the first bifurcation occur ($2T$)?
3. When does the second bifurcation occur ($4T$)?
4. Are you able to see the third bifurcation ($8T$)?
5. On decreasing the amplitude of V_{in} back to the initial point, do bifurcations occur at the same value as before? What does this discrepancy mean? Think it in terms of hysteresis.

Sketch the waveform plots of V_R for $1T$, $2T$, $4T$ and $8T$ bifurcations and describe them in your notebooks.

3.4.3 Time-series of voltage across diode.

Connect the circuit in the same way before except that in this case you will be feeding V_D to channel 1 of the oscilloscope. You will also have to reverse terminal connections inside the circuit as shown in the schematic below. Precisely following the color scheme below will help!

![Figure 6: Schematic for measuring V_D across resistor.](image)

Repeat the whole process as you did for waveform time-series of V_R. And note down the voltage values at which bifurcations occur.

Question How do your voltage values compare for bifurcations compare for V_R and V_D?

A diode has nearly a finite potential drop, V_R, when its forward biased (in the case of 1N4007 it is 1 V). In the reverse bias mode the diode the does not conduct (although it does become conducting...
after the point of blocking voltage has been passed). Now we are going to introduce a DC offset in our V_{in} and study the effects of it on V_D waveform visible on the oscilloscope.

Select a voltage value now where you can clearly see a stable second bifurcation ($2T$) on the waveform. Now introduce a DC offset into your V_{in}. First introduce an offset of +1 V and then an offset of −1 V into your signal.

To introduce an offset using the signal generator press **Shift** and then press **Offset/Gate** and using the knob select your amplitude for the offset.

Question What happens to the peaks in the case of +1 V offset? In the case of −1 V? Record and explain your observations.

3.4.4 Observing period bifurcations on the spectrum analyzer and determining the Feigenbaum constant.

As it is very hard to determine and clearly observe the point at which the third bifurcation occurs we will now use a spectrum analyzer. It is much easier to identify the third bifurcation by seeing the Fourier spectrum of the signal. Therefore the spectrum analyzer will help us in identifying the different frequencies present in the signal by creating the the spectral density graph and help identify the voltage values for the respective bifurcations.

Calculate Use Equation (1) and voltage values for $2T$ and $4T$ from previous sections to calculate and predict the voltage at which the third bifurcation should occur ($8T$).

The amplitude will again be varied manually in steps of 0.01 V using the signal generator but this time the signal V_R (across the resistor) will be fed into the spectrum analyzer.

To set up the spectrum analyzer follow the following steps:

1. After you have turned the analyzer on press **Preset/System**.
2. Now press **Preset**. This will take the analyzer to its factory settings.
3. To calibrate the analyzer first connect a BNC cable between **CAL OUT** and **RF IN**.
4. Then press the buttons in the following sequence **Preset/System**→ **Alignment**→ **Align**→ **All**. The system will take a minute to align itself.

Here are a few tips for using the spectrum analyzer.

1. Now connect the BNC which gives the voltage output across the resistor (V_R) and connect it to **RF IN**. Connect all the circuit components in the same way as shown in the schematic below.
2. To change the width of the spectral window press **Frequency**. Then press **Stop Frequency** and **Start Frequency** to set frequency limits of the window.
3. To make the peaks clearer and more distinguishable press **Amplitude**. Then press **Scale Type** and press it again to select **Lin**. Now press **Ref Level** and turn the knob to adjust the reference level.
4. To change the band width resolution press **BW/Avg** and all the options will be in front of you.
5. Set the number of **Average** samples to be 30 and set the **Average type** to power.
6. You can check the amplitude and the frequency corresponding to each peak by Peak Search
and then switching between the peaks. Our if you want to go to a certain point on the spectrum
press Marker and then rotate the knob to move the marker around the spectrum.

Explain The peaks which arise when bifurcations occur always arise to the left side of the main signal
peak (50 kHz). Where do the peaks at the right of the main peak come from?

Observe Using the spectrum analyzer you have to note down the value of voltages at which the
three bifurcations occur. Note down the frequency and the amplitude of each of the spectral peaks
for each of the bifurcations.

HINTS & TIPS

For period one ($1T$) you will see one peak in the spectrum. For period two ($2T$) you will see two
peaks one at 50 kHz and one at $\frac{50+0}{2} = 25$ kHz. For period four ($4T$) you will see four peaks and their
respective frequencies will be 50, $\frac{50+25}{2} = 37.5$, 25 and $\frac{25+0}{2} = 12.5$ (all in kHz).

Calculate What will be the frequency values of each of the 8 peaks you expect to see in period eight?

For each new wave, you might have to change the reference level, the spectral window, and the
resolution of the bandwidth of the spectrum analyzer to be able to see the peaks clearly. For example
while observing the point of onset for 25 kHz (period-2) peak, you have to set the reference level to
112.1 µV, spectral window to 24 - 26 kHz and the bandwidth resolution to 30 Hz. Whereas for period-8
peaks, you will have to decrease the reference level and increase the bandwidth resolution.

Question What is your value for the Feigenbaum constant? Do your voltage values for the bifurca-
tions taken using the oscilloscope and the spectrum analyzer match?

3.4.5 Plotting phase portraits.

Connect the circuit as shown in the schematic diagram. (Figure 13):

1. Turn on the oscilloscope and the signal generator.

2. Bring the oscilloscope into XY mode. On the oscilloscope you will now be observing the phase
portrait of this RLD-circuit. Channel 2 shows a signal proportional to the current I, and channel
1 is connected to a signal proportional to $\frac{dI}{dT}$, which are the variables for this system.
3. Start increasing the frequency from 0 V_{p-p} and keep increasing it to 20 V_{p-p} in steps 0.01 V.
4. Observe the changes in the phase portrait. Keep adjusting your oscilloscope scales accordingly to view the full phase portrait clearly.

Question

1. When does the first bifurcation occur ($2T$)?

2. When the does the second bifurcation occur ($4T$)?

3. Can you see period eight? Sketch and record all your phase portraits on your notebook.

3.5 Data acquisition and processing

In this final step, we will make phase portraits, Poincare maps, and bifurcation diagram. For this purpose, we will automatically sweep the input voltage (V_{in}) in a linear fashion. Using the NI DAQ card, a up-ramp voltage pulse will be generated, which will modulate the sine wave produced by the function generator ($BK4086$).

First perform the following steps in order to configure the signal generator ($BK4086$) enabling it to perform amplitude modulation:

1. Press [AM] to activate AM mode.
2. Press [frequency], then [50] [kHz] to set the frequency of the carrier wave. This can also be done by turning the knob.
3. Press [amplitude], then [2] [0] [V] to set the amplitude of the carrier signal. This can also be done by turning the knob.
4. Now when you press [menu] AM LEVEL (modulation depth) will appear on the screen. To set the AM LEVEL press [1] [0] [0] [N].
5. Press [menu] again and now AM FREQ will appear on the screen and you have to select the frequency/timeperiod of the increasing-ramp wave. As we will be using an external source (DAQ card) for modulation therefore no specific value has to be set for AM FREQ.
6. The same will be the case for **AM WAVE**.

7. Lastly press `[menu]` to select the **AM SOURCE** and set it to external by pressing `[2] [N]`.

3.5.1 Mastering Simple Modulation

Before plotting the bifurcation diagram, it is recommended for you to perform a simple exercise to understand how amplitude-modulation works. For this, we will send a modulating signal from computer to the signal generator via DAQ and observe it directly on the oscilloscope.

There are two wires coming out of the DAQ: live wire and a ground. See the lid of the DAQ card to identify live and ground wire. Using a BNC-to-crocodile clips cable, connect the crocodile clips to the DAQ outputs and the BNC part of the cable to the **MOD IN (3 V= 100 %)** terminal at the back of BK 4086 (for external modulation). Now connect one end of a BNC cable to the output of the signal generator and other to a channel on the oscilloscope.

Turn on your computer and open the LabVIEW file on the desktop under the name 'simple_modulation'. The modulating sine wave that is being generated by the LabVIEW program and delivered to the signal generator via DAQ has a frequency of 500 Hz and a voltage of 3 \(V_{pp}\).

Simple Modulation Exercise

1. Double check if the modulating wave is a sine wave with frequency and amplitude as mentioned above.

2. Run the LabVIEW file and record the maximum and minimum voltage values for the modulated wave on the oscilloscope.

3. Do you know what is a modulating single, carrier signal, and a modulated signal, and where are they being produced in our system?

4. Change the form of the modulating wave to saw-tooth or square and observe the changes on the oscilloscope.

5. While performing the settings for the signal generator, you set the AM LEVEL to 100%. Now change it to 75%, then to 50%, and finally to 25% and record the maximum and minimum voltage values.

After understanding the modulation mechanism that sends a ramp signal of increasing \(V_{in}\) into our circuit, we will move towards data acquisition and processing. For this purpose, we have created three separate LabVIEW files whose functions have been explained in Table 1.

3.5.2 Making Phase Portraits and Poincare Maps

1. Connect the RLD-circuit with the oscilloscope as you did for the case of a phase portraits in the previous section.

2. Use a USB-to-printer cable to connect the oscilloscope to the computer.

3. Open the **RLD_DAQ.vi** file on your desktop whose interface would look similar to Figure 9.
It generates an amplitude-modulation ramp that is fed into the circuit. Once the signal starts appearing clearly on the oscilloscope, which takes around 40 seconds, the LabVIEW file starts recording two sets of data: one across the resistor\((V_R)\) and the other across the resistor + inductor \((V_{R+L})\) and stores them in separate files. Using this data and a peak detection algorithm, it then creates time-series plots, phase portraits and Poincare maps. Figure 9 shows its front panel.

By storing voltage across resistor, it creates a file of \(V_R\) with corresponding \(V_{in}\) values. This is extremely important as the bifurcation diagram is essentially a plot between these two parameters. It might seem that these two sets of data should automatically be stored side by side. However, \(V_{in}\) is the input signal whereas \(V_R\) is the output signal so a mechanism is needed to store the two together. There is also Savitzky Golay Filter to fit the data onto a polynomial of choice and minimize noise. There is a button in the front panel to control the filter and the degree of polynomial.

It reads the output file from Data_Acquisition.vi and goes through all its data points to search for turning points. Finally, it note downs the value of \(V_R\) at a turning point and its respective \(V_{in}\) in a new notepad file.

Table 1: LabVIEW files used for creating the bifurcation diagram.

<table>
<thead>
<tr>
<th>Filename</th>
<th>Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>RLD_DAQ.vi</td>
<td>It generates an amplitude-modulation ramp that is fed into the circuit. Once the signal starts appearing clearly on the oscilloscope, which takes around 40 seconds, the LabVIEW file starts recording two sets of data: one across the resistor ((V_R)) and the other across the resistor + inductor ((V_{R+L})) and stores them in separate files. Using this data and a peak detection algorithm, it then creates time-series plots, phase portraits and Poincare maps. Figure 9 shows its front panel.</td>
</tr>
<tr>
<td>Data_Acquisition.vi</td>
<td>By storing voltage across resistor, it create a file of (V_R) with corresponding (V_{in}) values. This is extremely important as the bifurcation diagram is essentially a plot between these two parameters. It might seem that these two sets of data should automatically be stored side by side. However, (V_{in}) is the input signal whereas (V_R) is the output signal so a mechanism is needed to store the two together. There is also Savitzky Golay Filter to fit the data onto a polynomial of choice and minimize noise. There is a button in the front panel to control the filter and the degree of polynomial.</td>
</tr>
<tr>
<td>Peak_Detection.vi</td>
<td>It reads the output file from Data_Acquisition.vi and goes through all its data points to search for turning points. Finally, it note downs the value of (V_R) at a turning point and its respective (V_{in}) in a new notepad file.</td>
</tr>
</tbody>
</table>

4. On the upper left corner of the interface, you will find ‘VISA resource name’, select ‘USB0::0x0957’. If you don’t see this option, it means your oscilloscope hasn’t been connected to the computer.

5. Set the width to 40 and set the Peaks/Valleys to Valleys.

6. Set the modulation depth on the signal generator back to 100%.

7. Run the LabVIEW file.
When you will run the VI files, it will take around 15 s for the oscilloscope to start feeding live data to the computer. When the VI has started running you will have to adjust the scales on the oscilloscope ASAP.

IMPORTANT: These adjustments would have to be done using the oscilloscope knobs before 47 s mark on the VI clock. At the 47 s mark our modulated pulse will be initiated.

1. Set the Channel 1 amplitude scale to 500 mV
2. Set the Channel 2 amplitude scale to 50 V.
3. Set the horizontal time scale to 5 MSa/s.

Now run RLD_DAQ.vi. The file will generate a modulation ramp (50 kHz, 20 V_{pp}) that is fed into the circuit. The ramp pulse will have a period of 20 s and it will change the amplitude of the sine wave from 0 to 20 V_{pp}. Once the signal starts appearing clearly on the oscilloscope, which takes around 40 seconds, the LabVIEW file will start recording two sets of data: one across the resistor and other across the resistor + inductor and store them in separate files. Using this data and the peak detection algorithm, it will also display phase portraits and Poincare maps, which are the most convenient ways of observing chaos.

3.5.3 Drawing Bifurcation Diagrams

In order to plot the bifurcation diagram, we need to identify the peak (or valley) values from a time series of, say, the voltage across the resistor V_R. For period-1, all the peaks have the same amplitude, for period-2 there are peaks of two different amplitudes, for period-4, there are peaks of 4 different amplitudes, and so on. So a parameter (in this case the amplitude, V_{in}) is varied over a period of time and the peaks are sampled. The sampled peak amplitudes of V_R if plotted against the corresponding V_{in} would give us the bifurcation graph.

Following are the steps to get a bifurcation diagram for the data,

1. Keeping the set-up as it is for the last section, run the Data_Aquisition.vi file on your desktop. Don’t forget to adjust the scales on the oscilloscope for Channel 1, Channel 2 and horizontal time scale as mentioned previously. The VI would run for a total of 70 s.

As the VI file runs, the sampled data is recorded in the data files specified in the VI interface. The file that is of your concern is 'output file(V_{in}/V_R)' . It has two columns: first for input voltage and second for voltage across the resistor. Moreover, if you look at the interface of the LabVIEW file, you would notice a button for Filter Control. It is recommended to take two sets of data: one with the filter on and one with the filter off.

Question What do you think is the function of Savitzky Golay Filter?

2. Now the next step involves peak detection, for which we will use another LabVIEW file on your desktop, Peak_Detection.vi. Here, first you have to load the file for output file(V_{in}/V_R) from Data_Aquisition.vi. Set the width to 10, Peak/Valley to Valley, and run the file. Perform this twice for the two sets of data with and without filter. The output from this LabVIEW program gives V_R at which the period changes and the corresponding V_{in}.

3. The last step of the process is to plot the two columns of the output file from peak detection program in Matlab. For RLD-circuit, the bifurcation diagram is a plot of V_{IN} against V_R. The bifurcation plot then looks like Fig. 16.
Do you notice any difference between the bifurcation plots of the data with and without filter?

Figure 10: The bifurcation diagram you would obtain after running your VI files.

References

