Lahore University of Management Sciences

PHY 300 / PHY 500 – Experimental Physics Lab II / Graduate Physics Lab
Fall 2019

Instructor Dr. Muhammad Sabieh Anwar
Room No.
Office Hours
Email sabieh@lums.edu.pk
Telephone
Secretary/TA Fatima Perwaiz
TA Office Hours
Course URL (if any) http://physlab.org/lab-ii-phy-300/

<table>
<thead>
<tr>
<th>Course Basics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credit Hours</td>
</tr>
<tr>
<td>Lecture(s)</td>
</tr>
<tr>
<td>Recitation (per week)</td>
</tr>
<tr>
<td>Lab (if any) per week</td>
</tr>
<tr>
<td>Tutorial (per week)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core</td>
</tr>
<tr>
<td>Elective</td>
</tr>
<tr>
<td>Open for Student Category</td>
</tr>
<tr>
<td>Closed for Student Category</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COURSE DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>The course introduces the students to advanced and more rigorous experiments in physics, in which they cover a variety of important fields of physics through hands on experiments of varying complexity and duration. The course is offered mainly for students majoring in physics, as the most of it deals with the advanced concepts of physics and needs knowledge of fields varying from quantum mechanics optical physics</td>
</tr>
</tbody>
</table>
and solid state devices. Students are required to independently carry out the experiments and record their observations in properly maintained journals, demonstrating the essence of experimental science. Marking and evaluation greatly depends on students’ capability to properly accumulate and critically interpret the experimental observations, which they have to prove in the form of reports.

COURSE PREREQUISITE(S)

- Experimental Physics I (PHY 100) for undergraduates

COURSE OBJECTIVES

- Advanced physics experimentation
- Scientific report-writing
- Stimulating research activity and building new hardware for research in experimental physics

Learning Outcomes

After successful completion of this course, students should be able to:
1. operate advanced scientific instruments with a keen sense of safety, ratings, ability to interpret various modes of operation;
2. obtain an appreciation of vacuum and low temperature systems, building hardware, thermal control of equipment, using measurement sensors and transducers, condition signals, acquire data into the computer;
3. analyze and interpret physical data acquired from experiments and correlate them with rigorous theory;
4. comment on corroboration of experimental results with theoretical predictions, explore the limitations of experimental work and devise ways of improvement and adapting experimental schemes for enhancing precision, accuracy, robustness; and finally,
5. write technically advanced scientific reports.

Grading Breakup and Policy

See the grading scheme that will be uploaded on http://physlab.org/lab-ii-phy-300/.

Grading will be on an absolute scale. However, I will decide the cutoffs based on my judgment.
Expectations from Technical Report:

- Is the abstract really an abstract? Are the conclusions really conclusions?

- Are the sections titled properly? For example in an experiment that looks at the Franck-Hertz experiment using an oscilloscope, it is quite inappropriate to title a section “The Oscilloscope”. The measuring apparatus is simply a tool that reveals the ionization curve of mercury in the Franck-Hertz tube. Yes, if you are performing on an experiment aimed at understanding the lock-in amplifier, sections titled “Working Principle of a Lockin amplifier” is quite apt.

- Avoid shopping lists of apparatus and equipment. The apparatus you use must be seamlessly integrated into the main text.

- Avoid reproducing text and figures from the laboratory manuals.

- Be consistent in capitalization. Avoid excessive capitalization: “the cathode” instead of “the Cathode” should be preferred.

- Don’t copy-paste the figures churned out by Matlab. They have to be pruned, the fonts adjusted, the sizing has to make the axes and the labels readable, unwanted legend boxes showing “data 6”, “data 7” don’t mean anything. Gain familiarity with a nice graphics software. Our choice is Adobe Illustrator. You are free to choose your own.

- All symbols and figures should be in LaTeX’s math mode. Units are preferred outside the math mode.

- Appropriate paragraphing is important. Each paragraph should start, in many cases, with a topic.
sentence. At the end of every paragraph, I should expect what to find next. This interwoven theme should be made clear at the very beginning. In short, don’t make the report feel like a hop-on, hop-off route in a labyrinth, rather it should come out as one, logically consistent, unified thematic journey through the experiment.

- Only relevant theory must be discussed.

- Of course, grammar and style also matters. No need to be overly verbose, simple, succinct, short sentences are effective.

- Avoid using imperative tense and the second pronoun (“you will lift a beaker”), rather passive voice and past tense (“the beaker was placed”).

- Use proper sentences. Each sentence ends with a full stop. An equation is a part of a sentence. All sentences must end.

- Avoid starting sentences with “and”, “now”, “also”, “then”, with symbols and numerals (1,2,565,-3, E, Vi) etc.

What am I specially looking for:

- Does the report intelligently choose the kinds of graphs that reveal underlying physical patterns. Are the variables correctly chosen? Are the scales appropriate? Do we have close-ups of regions that show some salient features, such as kinks, transitions, or other forms that are not visible in zoomed out views.

- Are similar graphs strung together as sub-figures or are they spattered as distinct graphs with their individual numberings.

- Is there sufficient level of cross-referencing and linking of graphs and tables.

- I am not interested in an uninteresting account of the procedure regurgitated from the manual, rather a concise description of the procedure interwoven with insight, discussions, suggestions and interpretations. This is by far the most important thing that I am looking for.
Lahore University of Management Sciences

- Is the bibliography uniform? Are the citation schemes the same or different across the various references.

- Are the experimental parameters clearly stated?

- Are there sufficiently neat schematic illustrations that aid the readability of the text?

Marks will be deducted for:

- Not complying to rules of the lab: one must bring a lab notebook which is defined as a hard bound diary; one must leave the lab with all the apparatus in neat and orderly fashion so that it is ready for the next group. Leaving cluttered pages and your personal belongings in the lab

- Missing a lab session: there will be no make-up labs

- Arriving late.

- Arriving in the lab without reading the experiment manual of the assigned experiment.

Examination Detail

<table>
<thead>
<tr>
<th>Examination</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Midterm Exam</td>
<td>None</td>
</tr>
<tr>
<td>Final Exam</td>
<td>None</td>
</tr>
</tbody>
</table>

COURSE OVERVIEW

<table>
<thead>
<tr>
<th>Week/Lecture/Module</th>
<th>Topics</th>
<th>Recommended Readings</th>
<th>Objectives/Application</th>
</tr>
</thead>
</table>

Here is a sample list of experiments:

http://physlab.lums.edu.pk/index.php/Experiment_in_Lab-II
<table>
<thead>
<tr>
<th>Textbook(s)/Supplementary Readings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Listed on course website: http://physlab.lums.edu.pk/index.php/Experiment_in_Lab-II</td>
</tr>
</tbody>
</table>